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Testing Linear Restrictions

1.

Why do we test? Because we want to know! Do we have enough evidence to the contrary to
reject our Null Hypothesis? Run the test!

We use the F test to test linear restrictions in SLR and MLR models. What's a linear
restriction?, you ask... well, here are some examples: !

1) B=4,.2) p+25,=0,3) g,=0and B,=0,and 4) g =1and g§,=2.

a. We’ll be interested in counting the number of restrictions. To do that, just count the
number of equals signs ('='s). So in the previous examples, 1) and 2) have one
restriction, and 3) and 4) have two.

i. For some unknown reason we use the letter q to count the number of restrictions.
Running the F test:

a. Step 1. Start with the Null hypothesis that it’s A-OK to impose some linear restrictions
on the estimated coefficients in our model.

b. Step 2:Estimate the model with and without those restrictions... and focus on the SSRs
and how they change.

Since we’ve imposed a restriction (or restrictions) on the estimated coefficients, the SSRs
will almost always increase: SSR. > SSR,, .2

c. Step 3: OK, so SSRsincreased. That's no surprise! But by how much? ... alot? ... or
maybe not so much?

! Linear restrictions are linear functions of the unknown parameters.
2 The subscripts refer to the Restricted and Unrestricted models.
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i. Bigincrease in SSRs: If SSRs increase by a lot (whatever that is) then the restrictions
severely impacted the performance of the model, and so we reject the Null
Hypothesis (which was that the restrictions were A-OK).

ii. It's not so big: But if not so much, then maybe those restrictions weren’t so bad after
all, and we might fail to reject.... Which is to say that it really was A-OK to impose
those restrictions.

4. As you'll see below, running F tests in Stata is a snap. For example, to test the linear
restrictions above, you would run the following Stata commands just after estimating your

OLS model (reg y x, X, ):

Bi=p5,: test (X1:X2)
b. B +2p,=0: test(x, +2x,=0)

o

o

p,=0and B,=0: test (x,=0)(x,=0) orjust test x, x, ('=0"isassumed if no value
is specified)

d. g =1and g,=2: test (x,=1) (x,=2)

F Stats and F Tests
5. We use the F statistic (and the F distribution) to do the F test.
a. The F statistic is defined by:

SSR,, / (N—k —1)

where q is the number of restrictions (e.g. the number of '='s), and n—k —1 is the number
of degrees of freedom in the unrestricted (UR) model.

b. By construction F >0, assuming that F is well defined (since SSR;, > SSR ;).

6. The F statistic as an elasticity! Who knew?
a. The F statistic is really just an elasticity. We can rewrite the equation for F as:

(SSR; —SSRyz )/ SSR¢ _ %ASSR
q/(n—-k-1) %Adofs

b. So the F statistics tells you the %change in SSRs for a given %change in degrees of
freedom (you might call this bang per buck).
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7. We do the F test following the classical hypothesis testing protocol:
a. The Null Hypothesis is that the restrictions are A-OK.
b. Focus on Type | errors and the probability of a False Rejection.

c. Pick a small significance level, a , say a =.05, which will be the maximum acceptable
probability of a False Rejection.

d. For the given Fstat, compute the p-value as the
probability in the tail to the right of the Fstat:
p=P(F(q,n—k—-1) > Fstat) .2

e. The p value is the probability that you’d observe
an F statistic at least as large as Fstat when the
Null Hypothesis was in fact true. pakic = Ra1

f. Reject the Null Hypothesis if the p< e« ... and falil 0 2.23
to reject otherwise.
i. So reject the Null Hypothesis if the F statistic is large (|%ASSR| > |%Adof |)and the

associated probability level (p-value) is small (less than the significance level «). In
other words: the restrictions are rejected because when they were imposed, the world
got a whole lot worse.

ii. If the Fstat (elasticity) is small (|%ASSR| < |%Adof |) so that relatively speaking,

SSRs did not increase by very much, then the associated probability level (p-value) is
high, and the restrictions are not rejected and are deemed to be A-OK.

8. And so we reject the Null Hypothesis if the probability value associated with this test statistic
is below the desired significance level (p <) ... or equivalently, if the F statistic is above

the critical value c: Fstat >c, where prob{F(q,n—-k-1)>c}=a.

9. This should be very familiar sounding... as it is, after all, classical hypothesis testing.

3 Here's Stata syntax for the right tail F probability: Ftail(g, n-k-1, Fstat).
3
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F Distributions

10. Under MLR.1-MLR.6, the F statistic will have a F(g,n—k —1) (two parameters)
distribution. Here are some F distributions for different parameter values:
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F stats (w/ R? and SSEs)

11. When you impose restrictions on the estimated coefficients, SSR's typically increase.... and

R?'s and SSE's typically decrease. While the standard definition of the F statistic works
with SSRs, you can equivalently define F stats using the other Goodness of Fit metrics:

. R
a. R%'s: Define RZ =1~ SR,
SST

TR ][R

2 _ _SSRUR
and Rj; =1 ST Then
(RG:-R&)/a  (n—k-1)
SST[1-RZ |/(n-k-1) ~ [1-R%]/(n-k-1) g

AR? [ (1- R} )
%Adofs

AR?

(1-Rk)

, Where

AR? = (RjR - R;) Alternatively, F =
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SSE, ., _SSEu _ SSRy,

b. SSE's: Since R = , R, =—® ‘and 1-R%, = ,
"ossT TR ssT Ror = sst
~ (SSEe —SSE)/(aSST)  (n—k-—1) ASSE  ASSE/SSR,,
[ SSRye /ST |/ (n—k —1) g  SSR, %Adofs

12. And so we have three equivalent ways of defining the F statistic, driven by the changes in
three different Goodness-of-Fit metrics:

(SSR, —SSRyz )/ SSR,  %ASSR

q/(n-k-1) %Adofs '
(n—k-1) (R& —RZ) AR?/(1-R%)
b. F= = ,and
q (1_ RjR) %Adofs
. p_(n-k-1)SSE, ~SSE, _ASSE/SSR,

q SSR %Adofs

F Stats and tStat?s: Testing a single parameter

13. If you apply the F test to the case of testing just one parameter
value (say, testing g, =0 ), the F test will effectively be the
same as the t test... so there is no inconsistency between the

two tests. In fact, for these tests Fstat =tstat?, and the p-
values for the two statistics will be the same, since the F
distribution will essentially be the square of the t distribution:

t;, = Fy.-o and ﬁ
prob{F(l, n-k-1)< xz} = prob{-x<t,,, <x} for x>0.

(See examples below.)
14. The convergence of assessment and inference. In fact, you've already seen these sorts of
Fstats in action. You may recall that we previously observed that in SLR and MLR models,
a variable's t stat reflected it's incremental contribution to R?:

2

AR . . . N
tf} :dofs,1 Fﬁz , Wwhere AR? is a RHS variable's incremental contribution to R?.

a. If you consider the full model to be unrestricted, and the restricted model to restrict the x
coefficient to be zero (so effectively dropping x from the model), the F test statistic is:
AR?

_k-1) (R —Ra
F:(n K 1)(RUR ZR):dofs—z.
1 1-R% 1-R
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AR?

1-R?’

b. And since té =F (we are testing just one restriction) , we have tg = dofs

15. So the connection between t stats and incremental R*, which probably seemed to you to have
come out of nowhere, was in fact just an example of F stats in action.

Example |: Bodyfat

16. Test H, : A, =0 in the following SLR model. So we are testing the Null Hypothesis that
the true hgt parameter is zero.

. reg Brozek wgt abd hgt

Source | SS df MS Number of obs = 252
------------- e~ F(3, 248) = 213.67
Model | 10872.5504 3 3624.18347 Prob > F = 0.0000
Residual | 4206.46623 248 16.9615574 R-squared = 0.7210
————————————— e Adj R-squared = 0.7177
Total | 15079.0166 251 60.0757635 Root MSE = 4.1184
Brozek | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ e e e
wgt | -.120415 .0222516 -5.41 0.000 -.1642411  -.0765888
abd | .879846 .0579164 15.19 0.000 . 7657751 -9939168
hgt | -.1181607 .0824192 -1.43 0.153 -.2804915 .0441701
cons | -32.66247 6.51936 -5.01 0.000 -45.50285 -19.8221
. test hgt
(1) hgt=0
FC 1, 248) = 2.06
Prob > F = 0.1529

a. Notice the equivalence of the F test and the t test: 1.43* =2.04 (rounding error) and
Prob > F =0.1529 = P >|t|=0.153 . Since the p value is .15 (well above .1 and .05), we
cannot reject the null hypothesis that the true hgt parameter is 0, at any standard (and
attractive) level of statistical significance.

b. Here's the by-hand F test for testing the null hypothesis that the hgt parameter is 0. To
complete the calculation of the F statistic, we need to run the restricted model:
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. reg Brozek

Source

Model
Residual

5418.84407
17.0334478

CS

wgt abd

| SS df

e ————————————————_—_——————
| 10837.6881 2

| 4241.32849 249

e
| 15079.0166 251

| Coef Std. Err

+

| --1364535 -0192756

| -915138 -0525355

| -41.34812 2.412986

0.000
0.000
0.000

Number of obs = 252
F(2, 249) = 318.13
Prob > F = 0.0000
R-squared = 0.7187
Adj R-squared = 0.7165
Root MSE = 4.1272
[95% Conf. Interval]
-.1744175 -.0984895
-8116675 1.018609
-46.10059 -36.59566

c. Now that we have the SSRs (SSR; and SSR ), we can compute the F stat associated

with this test:

F(1,248) Distribution

(SSR, — SSR )/ SR

i. F=
q/(n—k-1)
~ (4,241.33—-4,206.47)/ 4,206.47
- 1/ 248
=2.055
ii. And the associated p value: Prob >F is
15

Stata: di Ftail(1,248,2.055) =.15296678

T T
1 2

Ftail(1, 248, 2.055) = .15296678

T T
3 4

17. Other tests. Here are some examples of other F tests, which could as well be t tests, testing

for equality of parameters:

. test wgt = hgt
(1) wgt - hgt =0
FC 1, 248) = 0.00
Prob > F = 0.9812
. test wgt = abd
(1) wgt - abd =0
FC 1, 248) = 161.61
Prob > F = 0.0000
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Reported F Stat's in OLS Output

18. Standard regression packages typically report by default the F statistic (and related p value)
associated with a particular F test... of the Null Hypothesis that all of the (non-intercept)
parameter values are zero. The reported F statistic, or F stat for short, is useful in seeing
whether the whole lot of RHS variables have explanatory power... so it has something to say
about the collective precision of estimation of the RHS variables as a group.

19. In conducting this F test, the restricted model has RZ = 0, since the dependent variable is
regressed on just the constant term. And since R%, = R* (the reported R-squared for the
regression), we have:

R* /k _dofs R® _ dofs SSE

[1-R*]/(n-k-1) Kk 1-R® Kk SSR’

This is the reported F statistic, used to assess the overall
statistical significance of the regression..

20. In practice, the reported F stats are almost always quite
sizable (in double, if not triple, digits). If your F stat is
even close to single digits, you probably have a crummy
model and need to find a better group of explanatory
variables... or better data... or maybe both!

21. So now you know. That F test can be used to test the Null
hypothesis that all of the (non-intercept) parameter values
are zero. And as | said before: If you cannot reject that
hypothesis, you have a really crummy model.

Example | ...continued

22. Test Hy: B, =0, B, =0 and B, =0 inthe SLR model above. So we are testing the

Null Hypothesis that the true parameters for the RHS variables are all zero. Run the F test
after running the regression:

. test wgt abd hgt

(1) wgt =0
(2) abd =0
(3 hgt=0
FC 3, 248) = 213.67
Prob > F = 0.0000

a. Notice the agreement with the reported F(3, 248) for the regression... as well as Prob > F.
b. And here's a replication of the F stat for the regression, F(3.248):

2
F= R°/k = 121073 =213.63 ... close enough

[1-R*]/(n-k-1)  (1-.7210)/248

8
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F Stats and tStat?s: Dropping multiples RHS variables

23.

24,

25.

27.

28.

Sometimes we wonder whether the inference gods will bless the dropping of multiple RHS
variables, or equivalently, the constraining of multiple RHS OLS/MLR estimated coefficients
to be 0. Bring on the F test!

a. Perhaps surprisingly, there can be an approximate relation between the test F statistic and
the reported t stats (for the dropped variables) in the original (full) MLR model.

To fix expectations: Start with an MLR model with the usual k RHS variables. We want to
test the Null Hypothesis that the true parameters for q of the RHS variables are all 0... to see
if we might perhaps have justification for dropping those RHS variables from the model.

The F statistic for the associated F Test is:
K 2 _R2 AR?/ ASSE /
o=k D (R ZR):dofs( zq):dofs( q).4
q 1-R%, 1-R SSR

And so the F stat will be driven by AR® / q (ASSE / q), the average (per dropped variable)
change in R* (SSE).

F

f_k Is there a relationship between the F statistic for the new test, and the reported
t stats in the full model for the variables under consideration.

26. We know that if we are thinking about dropping just one RHS variable,
t F=(t stat)2 , and so you might wonder:

The answer is, perhaps somewhat surprisingly, yes, maybe, sort of, ...it all depends, since in

many cases, F ~ éZ(t stat, )" .

a. If the dropped RHS variables have zero correlations amongst themselves, then:

F= 1Z(t stat, )2 ... and so if you want to do the eyeball test in thinking about dropping
q

multiple RHS variables under these conditions, just average the squares of the reported t
stats. And so if the individual t stats are all quite healthy, then the test's F stat will be as
well. And if not, then definitely not!

b. Without those zero correlations, the estimate (using iZ(t stat, )2 from the full model)
q

will be more or less close, and may be smaller or larger than the F stat, depending on
circumstances. But it's an easy place to start, especially if you are not in a position to run
the actual F test.

So as a practical matter, the F test is likely to reject Null Hypotheses when the reported t stats
in the full model are large... but may be more accommodating, when the reported t stats are
more modest.

4 This corrects a typo in an earlier version of this material.

9
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29. Here's a set of examples using the bodyfat dataset. In these examples, the full model has two
RHS variables, and so the F statistic, in testing whether you can drop the two RHS variables,

is just the reported F stat for the regression.

. corr Brozek age thigh chest wgt Models
(okb==252) (1) (2) (3)
| Brozek age thigh chest wgt age 0.18 0.10 0.26
————————— T 6.40 3.83 8.99
Brozek | 1.0000 Wgt 0.16
age | 0.2892 1.0000 13.30
thigh | 0.5613 -0.2001 1.0000 =
chest | 0.7029 0.1764 0.7293  1.0000 chest 0.62
wgt | 0.6132 -0.0127 0.8687 0.8942 1.00 15.12
_ _ thigh 0.95
30. Since age and wgt are highly uncorrelated, the 13.87
average of the t stat? provides a reasonable
estimate of the F stat. In the other two cases, the _cons (18.37)] (48.13)] (49.17)
estimates are more or less close to the true F stat. (7.13)] (11.72)] (10.86)
Importantly, however, note that the estimates may
be above or below the true F stat, depending on F = 11(?;-9825 11235’-217 11;:-52;’
: avg . . .
circumstances.
diff -1.07 14.45 -20.30

11
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Babies and Bathwater

31. Be careful about throwing out the baby with the bath water... you don’t want to exclude a
significant explanatory variable from your model just because it happens to be associated
with a set of variables that are jointly insignificant.

Or put differently: F tests judge variables by the friends they keep!

32. Example: Here’s an example using a sample from
a sovereign debt dataset. The F test does not reject
at the 10% level the Null Hypothesis that the
inflation and deficit_gdp parameters are zero...
even though deficit_gdp is statistically significant at
almost the 5% level (and has p <0.05 when
inflation is dropped from the model). But inflation
is so statistically insignificant, it pulls down
deficit_gdp in the process when the F test (of the
Null HypOtheSiS that /Binflation = /Bdeficit_gdp =0 ) is

conducted.

. reg NSRate corrupt gdp inflation deficit_gdp debt_gdp eurozone if _n < 30

Source | SS df MS Number of obs = 29
------------- e~ F(6, 22) = 12.99
Model | 88.8122105 6 14.8020351 Prob > F = 0.0000
Residual | 25.0657205 22 1.13935093 R-squared = 0.7799
————————————— e Adj R-squared = 0.7199
Total | 113.877931 28 4.06706897 Root MSE = 1.0674

NSRate | Coef Std. Err t P>]t] [95% Conf. Interval]
_____________ e e e e
corrupt | .644807 -1078044 5.98 0.000 .4212342 .8683797

gdp | -0002144 .0000765 2.80 0.010 .0000557 0003731
inflation .0361479 .0846488 0.43 0.674 -.139403 .2116988
deficit gdp -.0732749 .035707 -2.05 0.052 -.1473266 0007768
debt_gdp -.0220782 -0094606 -2.33 0.029 -.0416982  -.0024581
eurozone | -9996265 4721874 2.12 0.046 .0203699 1.978883
_cons | 4.269966 1.226366 3.48 0.002 1.726638 6.813295

. test inflation deficit_gdp

( 1) inflation = 0
( 2) deficit gdp =0
FC 2, 22) = 2.22
Prob > F = 0.1320

12
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F stats, Adjusted R-squared, RMSE and t Stats

33.

34.

35.

36.

37.

38.

39.

We previously considered adjusted R? (R?) as one of several Goodness-of-Fit metrics in
MLR models. At that time we focused on the impacts of adding and subtracting explanatory
variables one-by-one, and the relationship between changes in R? and the magnitudes of the
t stats of the added or subtracted RHS variables.

Recall that R? was developed in an attempt to adjust the coefficient of determination for the
fact that when you add RHS variables to a model, R? cannot decline since SSR cannot
increase. Small decreases in SSRs will not generate a higher adj R?; larger decreases will...
and what is small or large will also depend on how many changes were made.

From MLR Assessment:
a. Adjusted R? is defined: R?> =1- SSR_(n-1) _, MSE
SST (n—-k-1) Syy
- - (n _1) A2 2 . . .
i. Since m >0, R <R?, with the difference inversely related to k.
n — —

ii. Forgiven S, , adjusted R? increases if and only if MSE decreases. So if you are
adding or subtracting RHS variables from a MLR model, R? and MSE will move in
exactly opposite directions.

We now move from the world of one-by-one inclusions/exclusions to the more general cases
of adding or subtracting multiple explanatory variables.

It turns out that the change in adj R?, in say, adding the variables to the model) is closely
related to the F-statistic associated with testing whether those new RHS variables should be
in the model.

The change in adjusted R? in going from one model to the other is defined by:

= = 1 1 SSR SSR,
2 —R?=—"-(MSE, —MSE,;) = R____ R
e Re =3 (MSE, ) [(n—k—1)+q n-k-1

YY SYY

] . After much algebra,

icice D2 _ P2 _ q[l_lin]

a. The sign of this expression will depend on whether the F statistic is greater or less than 1:

R? increases if and only if the F statistic associated with the restrictions' F test exceeds 1.

You've in fact seen this before! Recall that for a single restriction, the F statistic is the square
of the t stat, and so, as you saw in MLR Assessment, R? increases when you add a RHS
variable if and only if the magnitude of the t stat of the added RHS variable exceeds 1. Now
you see that that insight extends to the case of multiple RHS explanatory variables... just use
the F stat rather than the t stat!

13
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Adding and Dropping RHS Variables

40. This last fact is useful when considering dropping RHS variables from a model.

a.

b.

One RHS variable:

I. |tstat|>1: If a RHS variable has a [t stat| > 1 then dropping that variable from the
model will cause the adjusted R-squared to decline.

1. Put differently: Adding RHS variables with [t stat| > 1 will lead to higher R®.

Ii. |tstat| <1: And if |t stat| < 1, then adjusted R-squared will increase when that
variable is dropped from the model.®

Multiple RHS variables:

i. Fstat>1: If the Fstat associated with dropping multiple RHS variables is > 1 then
dropping those variables from the model will cause adjusted R-squared to decline.

1. Put differently: Adding RHS variables with Fstat > 1 will lead to higher R?.

ii. Fstat<1: And if Fstat <1, then adjusted R-squared will increase when those
variables are dropped from the model.

41. Relation to statistical significance: It could be that additional RHS variables that lead to a
higher R? are not statistically significant. Adding a RHS variable with |t stat| > 1 will be
associated with higher R?; but statistical significance will generally want to see a |t stat| > 2
or so.

a.

If the added variable is statistically significant (so its t stat is above 1), then R? increased
when that variable was added to the model.

But it could be that the new variable is not statistically significant, even though adjusted
R-squared increased when the variable was added to the model.

An Example: Spoze that you have a RHS variable with a t stat of 1.5. We would
normally say that that variable was not statistically significant at standard significance
levels. And so you might be tempted to toss that variable from your MLR model. But if

you do that, R? will decline, since the t stat > 1.

This highlights a tension between two approaches to MLR model building. You could be

focused on maximizing R?... or perhaps you are more focused on statistical significance.
These two objectives can conflict at times. Deal with it!

5> And yes, if t stat = 0, then there will be no change to adjusted R-squared when the variable is dropped from the

model.

14
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prob (F(q, n-k-1)

> 1)

prob (F(q, n-k-1) > 2)

prob (F(q, n-k-1) > 4)

g: #restrictions

g: #restrictions

g: #restrictions

dofs 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10dofs
10[ 34%([ 40% [ 43% | 45%( 47% 19%]19%| 18%| 17%] 16% 7%|[ 5% 4% 3%] 3% 10
20]33%[ 39%) 41%| 43%| 44% ] 48%| | 17%]|16%|[15%)] 13%| 12%)| 9%| |6%]|3%|2%|2%[1%[0%| 20
50]32% | 38%) 40%| 42%| 43% | 46%| | 16%]|15%[13%]|11%| 9%)]|5%]| |5%]|2%]|1%]|1%|[0%|[0%| 50
100| 32%37%[ 40%| 41%|[ 42%| 45%| [16%]14%]|12%]|10%]| 9%|[4%]| |5%)]2%)]|1%)0%|0%|0%]| 100
250] 32%) 37%) 39%| 41%| 42%| 44%| |16%]|14%]|11%]|10%| 8%]|3%| |5%|2%]|1%|0%|0%|0%]| 250
500(32%([37%[39%[41%|42%[44%| | 16%)14%|11%| 9%)| 8%)|3%| |5%[2%|1%|0%|0%|0%]| 500

Example ll: More Bodyfat

[€)) @ A )
Brozek Brozek Brozek Brozek
wgt -0.151*** -0.129*** -0.154*** -0.132***
(-5.21) (-3.68) (-4.92) (-3.56)
abd 0.937*** 0.911*** 0.940*** 0.914***
(17.19) (15.37) (16.72) (15.01)
hip -0.154 -0.182 -0.153 -0.181
(-1.22) (-1.42) (-1.21) (-1.41)
thigh 0.277* 0.255* 0.277* 0.255*
(2.43) 2.21) (2.42) (2.20)
hgt -0.0983 -0.0982
(-1.13) (-1.12)
ankle 0.0477 0.0459
(0.24) (0.23)
cons -41.80*** -32.33** -42.73*** -33.24**
(-6.45) (-3.05) (-5.65) (-2.93)
N 252 252 252 252
R-sq 0.7253 0.7267 0.7254 0.7268
adj. R-sq 0.7208 0.7212 0.7198 0.7201
rmse 4.095 4.093 4.103 4.101

tstats and t tests:
(1) to (2) (add hgt): hgt [tstat| > 1, R? and adj R? increase, RMSE decreases
(1) to (3) (add ankle): ankle |tstat| < 1, R? increases, adj R? decreases, and RMSE increases

15
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F stats and F tests:
(4) to (1) (drop hgt and ankle): Since adj R? increases,® the F test associated with dropping hgt
and ankle from (4) will have an Fstat<1 ...

Here are the F test results:

. reg Brozek wgt abd hip thigh hgt ankle
. test hgt ankle

(1) hgt=0
(2) ankle =0
FC 2, 245) = 0.66
Prob > F = 0.5180

% In a previous version of this handout, the incorrectly said decreases.
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