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Testing Linear Restrictions 

1. Why do we test?  Because we want to know!  Do we have enough evidence to the contrary to 
reject our Null Hypothesis?  Run the test! 

2. We use the F test to test linear restrictions in SLR and MLR models.  What's a linear 
restriction?, you ask… well, here are some examples: 1 

1) 1 2β β= , 2) 1 22 0β β+ = , 3) 1 20 0andβ β= = , and 4) 1 21 2andβ β= = . 

a. We’ll be interested in counting the number of restrictions.  To do that, just count the 
number of equals signs ('='s).  So in the previous examples, 1) and 2) have one 
restriction, and 3) and 4) have two. 

i. For some unknown reason we use the letter q to count the number of restrictions. 

3. Running the F test: 

a. Step 1:  Start with the Null hypothesis that it’s A-OK to impose some linear restrictions 
on the estimated coefficients in our model.   

b. Step 2:Estimate the model with and without those restrictions… and focus on the SSRs 
and how they change. 

Since we’ve imposed a restriction (or restrictions) on the estimated coefficients, the SSRs 
will almost always increase:   R URSSR SSR≥ .2 

c. Step 3:  OK, so  SSRs increased.  That's no surprise!  But by how much?  … a lot? … or 
maybe not so much? 

                                                 
1 Linear restrictions are linear functions of the unknown parameters. 
2 The subscripts refer to the Restricted and Unrestricted models. 
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i. Big increase in SSRs:  If SSRs increase by a lot (whatever that is) then the restrictions 
severely impacted the performance of the model, and so we reject the Null 
Hypothesis (which was that the restrictions were A-OK). 

ii. It's not so big:  But if not so much, then maybe those restrictions weren’t so bad after 
all, and we might fail to reject…. Which is to say that it really was A-OK to impose 
those restrictions. 

4. As you'll see below, running F tests in Stata is a snap.  For example, to test the linear 
restrictions above, you would run the following Stata commands just after estimating your 
OLS model ( 1 2reg y x x  ): 

a. 1 2β β= :  1 2( )test x x=  

b. 1 22 0β β+ = :  1 2( 2 0)test x x+ =  

c. 1 20 0andβ β= = :  1 2( 0) ( 0)test x x= =   or just 1 2test x x   ( ' 0 '=  is assumed if no value 
is specified) 

d. 1 21 2andβ β= = :  1 2( 1) ( 2)test x x= =  

 
F Stats and F Tests 

5. We use the F statistic (and the F distribution) to do the F test.   

a. The F statistic is defined by:   

( ) /
/ ( 1)

R UR

UR

SSR SSR q
Fstat F

SSR n k
−

= =
− −

,   

where q is the number of restrictions (e.g. the number of '='s), and 1n k− −  is the number 
of degrees of freedom in the unrestricted (UR) model.   

b. By construction 0F ≥ , assuming that F is well defined (since R URSSR SSR≥ ). 

6. The F statistic as an elasticity!  Who knew? 

a. The F statistic is really just an elasticity.  We can rewrite the equation for F as:   

( ) / %
/ ( 1) %

R UR URSSR SSR SSR SSRF
q n k dofs
− ∆

= =
− − ∆

 

b. So the F statistics tells you the %change in SSRs for a given %change in degrees of 
freedom (you might call this bang per buck). 
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7. We do the F test following the classical hypothesis testing protocol:  

a. The Null Hypothesis is that the restrictions are A-OK. 

b. Focus on Type I errors and the probability of a False Rejection.   

c. Pick a small significance level, α  , say .05α = , which will be the maximum acceptable 
probability of a False Rejection. 

d. For the given Fstat, compute the p-value as the 
probability in the tail to the right of the Fstat:  

( ( , 1) )p P F q n k Fstat= − − >  .3 

e. The p value is the probability that you’d observe 
an F statistic at least as large as Fstat when the 
Null Hypothesis was in fact true. 

f. Reject the Null Hypothesis if the p α< … and fail 
to reject otherwise. 

i. So reject the Null Hypothesis if the F statistic is large ( )% %SSR dof∆ ∆ and the 
associated probability level (p-value) is small (less than the significance level α ).  In 
other words:  the restrictions are rejected because when they were imposed, the world 
got a whole lot worse. 

ii. If the Fstat (elasticity) is small ( )% %SSR dof∆ ∆  so that relatively speaking, 
SSRs did not increase by very much, then the associated probability level (p-value) is 
high, and the restrictions are not rejected and are deemed to be A-OK. 

8. And so we reject the Null Hypothesis if the probability value associated with this test statistic 
is below the desired significance level ( )p α<  … or equivalently, if the F statistic is above 

the critical value c:  Fstat c> , where { }( , 1)prob F q n k c α− − > = . 

9. This should be very familiar sounding… as it is, after all, classical hypothesis testing. 
  

                                                 
3 Here's Stata syntax for the right tail F probability:  Ftail(q, n-k-1, Fstat). 
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F Distributions 

10. Under MLR.1-MLR.6, the F statistic will have a ( , 1)F q n k− −  (two parameters) 
distribution.  Here are some F distributions for different parameter values: 

  

F(2,20) Distribution F(3,20) Distribution 

  

F(10,20) Distribution F(15,20) Distribution 

 
 
F stats (w/ R2 and SSEs) 

11. When you impose restrictions on the estimated coefficients, SSR's typically increase…. and 
2 'R s  and SSE's typically decrease.  While the standard definition of the F statistic works 

with SSRs, you can equivalently define F stats using the other Goodness of Fit metrics: 

a. 2 'R s :  Define 2 1 R
R

SSR
R

SST
= −  and 2 1 UR

UR
SSR

R
SST

= − .  Then 

( ) ( )
( )

2 2 2 2 2

2 2 2

1 1 / / ( 1)
1 / ( 1) 1 / ( 1) 1

R UR UR R

UR UR UR

SST R R q R R q n k RF
qSST R n k R n k R

   − − − − − − ∆   = = =
   − − − − − − −   

, where 

( )2 2 2
UR RR R R∆ = − .  Alternatively, 

( )2 2/ 1

%
URR R

F
dofs

∆ −
=

∆
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b. SSE's:  Since 2 R
R

SSE
R

SST
= , 2 UR

UR
SSE

R
SST

= , and 21 UR
UR

SSR
R

SST
− = , 

( ) / ( ) /( 1)
%/ / ( 1)

UR R UR

URUR

SSE SSE q SST SSE SSRn k SSEF
q dofsSSRSSR SST n k

− ∆− − ∆
= = =

∆  − − 
. 

12. And so we have three equivalent ways of defining the F statistic, driven by the changes in 
three different Goodness-of-Fit metrics: 

a. ( ) / %
/ ( 1) %

R UR URSSR SSR SSR SSRF
q n k dofs
− ∆

= =
− − ∆

,  

b. 
( )
( )

( )2 2 2 2

2

/ 1( 1)
%1

UR R UR

UR

R R R Rn kF
q dofsR

− ∆ −− −
= =

∆−
, and  

c. /( 1)
%

UR R UR

UR

SSE SSE SSE SSRn kF
q dofsSSR

− ∆− −
= =

∆
 

 
 
F Stats and  tStat2s:  Testing a single parameter 

13. If you apply the F test to the case of testing just one parameter 
value (say, testing 0xβ =  ), the F test will effectively be the 
same as the t test…  so there is no inconsistency between the 
two tests.  In fact, for these tests 2Fstat tstat= , and the p-
values for the two statistics will be the same, since the F 
distribution will essentially be the square of the t distribution:   

2
ˆ 0xx

t Fββ ==  and 

{ } { }2
1(1, 1) n kprob F n k x prob x t x− −− − < = − < <  for 0x > . 

(See examples below.) 

14. The convergence of assessment and inference.  In fact, you've already seen these sorts of 
Fstats in action.  You may recall that we previously observed that in SLR and MLR models, 
a variable's t stat reflected it's incremental contribution to 2R : 

2
2
ˆ 21x

xRt dofs
Rβ

∆
=

−
, where 2

xR∆  is a RHS variable's incremental contribution to 2R .   

a. If you consider the full model to be unrestricted, and the restricted model to restrict the x 
coefficient to be zero (so effectively dropping x from the model), the F test statistic is: 

( )2 2 2

2 2

( 1)
1 1 1

UR R x

UR

R R Rn kF dofs
R R

− ∆− −
= =

− −
.   
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b. And since 2
ˆ
x

t F
β
=  (we are testing just one restriction) , we have 

2
2
ˆ 21x

xRt dofs
Rβ

∆
=

−
. 

15. So the connection between t stats and incremental 2R , which probably seemed to you to have 
come out of nowhere, was in fact just an example of F stats in action. 

 
Example I:  Bodyfat 

16. Test 0 : 0hgtH β =  in the following SLR model.   So we are testing the Null Hypothesis that 
the true hgt parameter is zero. 
 

. reg Brozek wgt abd hgt 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(3, 248)       =    213.67 
       Model |  10872.5504         3  3624.18347   Prob > F        =    0.0000 
    Residual |  4206.46623       248  16.9615574   R-squared       =    0.7210 
-------------+----------------------------------   Adj R-squared   =    0.7177 
       Total |  15079.0166       251  60.0757635   Root MSE        =    4.1184 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wgt |   -.120415   .0222516    -5.41   0.000    -.1642411   -.0765888 
         abd |    .879846   .0579164    15.19   0.000     .7657751    .9939168 
         hgt |  -.1181607   .0824192    -1.43   0.153    -.2804915    .0441701 
       _cons |  -32.66247    6.51936    -5.01   0.000    -45.50285    -19.8221 
------------------------------------------------------------------------------ 
 
. test hgt 
 
 ( 1)  hgt = 0 
 
       F(  1,   248) =    2.06 
            Prob > F =    0.1529 
 

a. Notice the equivalence of the F test and the t test:  21.43 2.04=  (rounding error) and 
0.1529 | | 0.153Prob F P t> = = > =  .  Since the p value is .15 (well above .1 and .05), we 

cannot reject the null hypothesis that the true hgt parameter is 0, at any standard (and 
attractive) level of statistical significance. 

b. Here's the by-hand F test for testing the null hypothesis that the hgt parameter is 0.  To 
complete the calculation of the F statistic, we need to run the restricted model: 
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. reg Brozek wgt abd 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(2, 249)       =    318.13 
       Model |  10837.6881         2  5418.84407   Prob > F        =    0.0000 
    Residual |  4241.32849       249  17.0334478   R-squared       =    0.7187 
-------------+----------------------------------   Adj R-squared   =    0.7165 
       Total |  15079.0166       251  60.0757635   Root MSE        =    4.1272 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wgt |  -.1364535   .0192756    -7.08   0.000    -.1744175   -.0984895 
         abd |    .915138   .0525355    17.42   0.000     .8116675    1.018609 
       _cons |  -41.34812   2.412986   -17.14   0.000    -46.10059   -36.59566 
------------------------------------------------------------------------------ 
 

c. Now that we have the SSRs ( RSSR  and URSSR ), we can compute the F stat associated 
with this test: 

i. 
( ) /

/ ( 1)
R UR URSSR SSR SSR

F
q n k
−

=
− −

 

( )4,241.33 4,206.47 / 4,206.47
1 / 248

−
=

2.055=  

ii. And the associated p value:  Prob > F is 
.15   

Stata:  di Ftail(1,248,2.055) =.15296678 

 

17. Other tests.  Here are some examples of other F tests, which could as well be t tests, testing 
for equality of parameters: 
 

. test wgt = hgt 
 
 ( 1)  wgt - hgt = 0 
 
       F(  1,   248) =    0.00 
            Prob > F =    0.9812 
 
 

 
. test wgt = abd 
 
 ( 1)  wgt - abd = 0 
 
       F(  1,   248) =  161.61 
            Prob > F =    0.0000 
 

 
  

0 1 2 3 4
 

Ftail(1, 248, 2.055) = .15296678

F(1,248) Distribution
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Reported F Stat's in OLS Output 

18. Standard regression packages typically report by default the F statistic (and related p value) 
associated with a particular F test…  of the Null Hypothesis that all of the (non-intercept) 
parameter values are zero.  The reported F statistic, or F stat for short, is useful in seeing 
whether the whole lot of RHS variables have explanatory power… so it has something to say 
about the collective precision of estimation of the RHS variables as a group.   

19. In conducting this F test, the restricted model has 2 0RR = , since the dependent variable is 
regressed on just the constant term.  And since 2 2

URR R=  (the reported R-squared for the 
regression), we have: 

2 2

22

/
11 / ( 1)

R k dofs R dofs SSEF
k k SSRRR n k

= = =
− − − − 

. 

This is the reported F statistic, used to assess the overall 
statistical significance of the regression.. 

20. In practice, the reported F stats are almost always quite 
sizable (in double, if not triple, digits).  If your F stat is 
even close to single digits, you probably have a crummy 
model and need to find a better group of explanatory 
variables… or better data… or maybe both! 

21. So now you know.  That F test can be used to test the Null 
hypothesis that all of the (non-intercept) parameter values 
are zero.  And as I said before:  If you cannot reject that 
hypothesis, you have a really crummy model. 

 
Example I …continued 

22. Test 0 : 0, 0 0wgt abd hgtH andβ β β= = =  in the SLR model above.   So we are testing the 
Null Hypothesis that the true parameters for the RHS variables are all zero.  Run the F test 
after running the regression: 

 
. test wgt abd hgt 
 
 ( 1)  wgt = 0 
 ( 2)  abd = 0 
 ( 3)  hgt = 0 
 
       F(  3,   248) =  213.67 
            Prob > F =    0.0000 
 

a. Notice the agreement with the reported F(3, 248) for the regression… as well as Prob > F. 

b. And here's a replication of the F stat for the regression, F(3.248): 
2

2

/ .7210 / 3 213.63
(1 .7210) / 2481 / ( 1)

R kF
R n k

= = =
− − − − 

 …  close enough 
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F Stats and  tStat2s:  Dropping multiples RHS variables 

23. Sometimes we wonder whether the inference gods will bless the dropping of multiple RHS 
variables, or equivalently, the constraining of multiple RHS OLS/MLR estimated coefficients 
to be 0.  Bring on the F test! 

a. Perhaps surprisingly, there can be an approximate relation between the test F statistic and 
the reported t stats (for the dropped variables) in the original (full) MLR model.   

24. To fix expectations:  Start with an MLR model with the usual k RHS variables.  We want to 
test the Null Hypothesis that the true parameters for q of the RHS variables are all 0… to see 
if we might perhaps have justification for dropping those RHS variables from the model. 

25. The F statistic for the associated F Test is:   

( ) ( ) ( )2 2 2

2 2

/ /( 1)
1 1
UR R

UR

R R R q SSE qn kF dofs dofs
q SSRR R

− ∆ ∆− −
= = =

− −
.4 

And so the F stat will be driven by 2 /R q∆  ( /SSE q∆ ), the average (per dropped variable) 
change in 2R  ( SSE ). 

26. We know that if we are thinking about dropping just one RHS variable, 
( )2F t stat= , and so you might wonder:   

Is there a relationship between the F statistic for the new test, and the reported 
t stats in the full model for the variables under consideration. 

27. The answer is, perhaps somewhat surprisingly,  yes, maybe, sort of, …it all depends, since in 

many cases, ( )21~ iF t stat
q∑ . 

a. If the dropped RHS variables have zero correlations amongst themselves, then:  

( )21
iF t stat

q
= ∑ … and so if you want to do the eyeball test in thinking about dropping 

multiple RHS variables under these conditions, just average the squares of the reported t 
stats.  And so if the individual t stats are all quite healthy, then the test's F stat will be as 
well.  And if not, then definitely not! 

b. Without those zero correlations, the estimate (using ( )21
it stat

q∑  from the full model) 

will be more or less close, and may be smaller or larger than the F stat, depending on 
circumstances.  But it's an easy place to start, especially if you are not in a position to run 
the actual F test. 

28. So as a practical matter, the F test is likely to reject Null Hypotheses when the reported t stats 
in the full model are large…  but may be more accommodating, when the reported t stats are 
more modest. 

                                                 
4 This corrects a typo in an earlier version of this material. 
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29. Here's a set of examples using the bodyfat dataset.  In these examples, the full model has two 
RHS variables, and so the F statistic, in testing whether you can drop the two RHS variables, 
is just the reported F stat for the regression. 

30. Since age and wgt are highly uncorrelated, the 
average of the t stat2 provides a reasonable 
estimate of the F stat.  In the other two cases, the 
estimates are more or less close to the true F stat.  
Importantly, however, note that the estimates may 
be above or below the true F stat, depending on 
circumstances. 

 
 
 
 

 
 
 
  

(1) (2) (3)
age 0.18       0.10       0.26       

6.40       3.83       8.99       
wgt 0.16       

13.30     
chest 0.62       

15.12     
thigh 0.95       

13.87     

_cons (18.37)    (48.13)    (49.17)    
(7.13)      (11.72)    (10.86)    

F 107.85 136.07 116.29
avg t^2 108.92 121.61 136.59

diff -1.07 14.45 -20.30

Models
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Babies and Bathwater 

31. Be careful about throwing out the baby with the bath water…  you don’t want to exclude a 
significant explanatory variable from your model just because it happens to be associated 
with a set of variables that are jointly insignificant.   

Or put differently:  F tests judge variables by the friends they keep! 
32. Example:  Here’s an example using a sample from 

a sovereign debt dataset.  The F test does not reject 
at the 10% level the Null Hypothesis that the 
inflation and deficit_gdp parameters are zero… 
even though deficit_gdp is statistically significant at 
almost the 5% level (and has 0.05p <  when 
inflation is dropped from the model).  But inflation 
is so statistically insignificant, it pulls down 
deficit_gdp in the process when the F test (of the 
Null Hypothesis that _ 0inflation deficit gdpβ β= =  ) is 
conducted. 

 

 

. reg NSRate corrupt gdp inflation deficit_gdp debt_gdp eurozone if _n < 30 
 
      Source |       SS           df       MS      Number of obs   =        29 
-------------+----------------------------------   F(6, 22)        =     12.99 
       Model |  88.8122105         6  14.8020351   Prob > F        =    0.0000 
    Residual |  25.0657205        22  1.13935093   R-squared       =    0.7799 
-------------+----------------------------------   Adj R-squared   =    0.7199 
       Total |  113.877931        28  4.06706897   Root MSE        =    1.0674 
 
------------------------------------------------------------------------------ 
      NSRate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     corrupt |    .644807   .1078044     5.98   0.000     .4212342    .8683797 
         gdp |   .0002144   .0000765     2.80   0.010     .0000557    .0003731 
   inflation |   .0361479   .0846488     0.43   0.674     -.139403    .2116988 
 deficit_gdp |  -.0732749    .035707    -2.05   0.052    -.1473266    .0007768 
    debt_gdp |  -.0220782   .0094606    -2.33   0.029    -.0416982   -.0024581 
    eurozone |   .9996265   .4721874     2.12   0.046     .0203699    1.978883 
       _cons |   4.269966   1.226366     3.48   0.002     1.726638    6.813295 
------------------------------------------------------------------------------ 
 

 
. test inflation deficit_gdp 
 
 ( 1)  inflation = 0 
 ( 2)  deficit_gdp = 0 
 
       F(  2,    22) =    2.22 
            Prob > F =    0.1320 
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F stats, Adjusted R-squared, RMSE and t Stats 

33. We previously considered adjusted R2 ( 2R ) as one of several Goodness-of-Fit metrics in 
MLR models.  At that time we focused on the impacts of adding and subtracting explanatory 
variables one-by-one, and the relationship between changes in 2R  and the magnitudes of the 
t stats of the added or subtracted RHS variables. 

34. Recall that 2R  was developed in an attempt to adjust the coefficient of determination for the 
fact that when you add RHS variables to a model, R2 cannot decline since SSR cannot 
increase.  Small decreases in SSRs will not generate a higher adj R2; larger decreases will… 
and what is small or large will also depend on how many changes were made. 

35. From MLR Assessment: 

a. Adjusted R2 is defined:  2 ( 1)1
( 1)

SSR nR
SST n k

−
= −

− −
1

YY

MSE
S

= − . 

i. Since ( 1) 0
( 1)

n
n k

−
>

− −
, 2 2R R≤ , with the difference inversely related to k. 

ii. For given YYS , adjusted R2 increases if and only if MSE decreases.  So if you are 
adding or subtracting RHS variables from a MLR model, 2R  and MSE will move in 
exactly opposite directions. 

36. We now move from the world of one-by-one inclusions/exclusions to the more general cases 
of adding or subtracting multiple explanatory variables. 

37. It turns out that the change in adj R2, in say, adding the variables to the model) is closely 
related to the F-statistic associated with testing whether those new RHS variables should be 
in the model.   

38. The change in adjusted R2 in going from one model to the other is defined by:   

( )2 2 1 1
( 1) 1

URR
UR R R UR

YY YY

SSRSSR
R R MSE MSE

S S n k q n k
 

− = − = − − − + − − 
.  After much algebra, 

this is:  [ ]
2

2 2
1

1
( 1)

UR
UR R

q R
R R F

n k q

 − − = −
− − +

. 

a. The sign of this expression will depend on whether the F statistic is greater or less than 1: 
2R  increases if and only if the F statistic associated with the restrictions' F test exceeds 1.   

39. You've in fact seen this before!  Recall that for a single restriction, the F statistic is the square 
of the t stat, and so, as you saw in MLR Assessment, 2R  increases when you add a RHS 
variable if and only if the magnitude of the t stat of the added RHS variable exceeds 1.  Now 
you see that that insight extends to the case of multiple RHS explanatory variables… just use 
the F stat rather than the t stat! 
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Adding and Dropping RHS Variables 
40. This last fact is useful when considering dropping RHS variables from a model.   

a. One RHS variable:   
i. |t stat| > 1:  If a RHS variable has a |t stat| > 1 then dropping that variable from the 

model will cause the adjusted R-squared to decline.   

1. Put differently:  Adding RHS variables with |t stat| > 1 will lead to higher 2R . 

ii. |t stat| < 1:  And if |t stat| < 1, then adjusted R-squared will increase when that 
variable is dropped from the model.5   

b. Multiple RHS variables:   
i. Fstat > 1:  If the Fstat associated with dropping multiple RHS variables is  > 1 then 

dropping those variables from the model will cause adjusted R-squared to decline.   

1. Put differently:  Adding RHS variables with Fstat > 1 will lead to higher 2R . 

ii. Fstat < 1:  And if  Fstat < 1, then adjusted R-squared will increase when those 
variables are dropped from the model.   

41. Relation to statistical significance:  It could be that additional RHS variables that lead to a 
higher 2R  are not statistically significant.  Adding a RHS variable with |t stat| > 1 will be 
associated with higher 2R ; but statistical significance will generally want to see a |t stat| > 2 
or so.   

a. If the added variable is statistically significant (so its t stat is above 1), then 2R  increased 
when that variable was added to the model. 

b. But it could be that the new variable is not statistically significant, even though adjusted 
R-squared increased when the variable was added to the model. 

c. An Example:  Spoze that you have a RHS variable with a t stat of 1.5.  We would 
normally say that that variable was not statistically significant at standard significance 
levels.  And so you might be tempted to toss that variable from your MLR model.  But if 
you do that, 2R  will decline, since the t stat > 1. 

d. This highlights a tension between two approaches to MLR model building.  You could be 
focused on maximizing 2R … or perhaps you are more focused on statistical significance.  
These two objectives can conflict at times.  Deal with it! 

 

                                                 
5 And yes, if t stat = 0, then there will be no change to adjusted R-squared when the variable is dropped from the 
model. 
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Example II:  More Bodyfat  
-------------------------------------------------------------- 
                 (1)          (2)          (3)          (4)    
              Brozek       Brozek       Brozek       Brozek    
-------------------------------------------------------------- 
wgt           -0.151***    -0.129***    -0.154***    -0.132*** 
             (-5.21)      (-3.68)      (-4.92)      (-3.56)    
 
abd            0.937***     0.911***     0.940***     0.914*** 
             (17.19)      (15.37)      (16.72)      (15.01)    
 
hip           -0.154       -0.182       -0.153       -0.181    
             (-1.22)      (-1.42)      (-1.21)      (-1.41)    
 
thigh          0.277*       0.255*       0.277*       0.255*   
              (2.43)       (2.21)       (2.42)       (2.20)    
 
hgt                       -0.0983                   -0.0982    
                          (-1.13)                   (-1.12)    
 
ankle                                   0.0477       0.0459    
                                        (0.24)       (0.23)    
 
_cons         -41.80***    -32.33**     -42.73***    -33.24**  
             (-6.45)      (-3.05)      (-5.65)      (-2.93)    
-------------------------------------------------------------- 
N                252          252          252          252    
 
R-sq          0.7253       0.7267       0.7254       0.7268    
 
adj. R-sq     0.7208       0.7212       0.7198       0.7201    
 
rmse           4.095        4.093        4.103        4.101    
-------------------------------------------------------------- 
 

tstats and t tests: 
(1) to (2) (add hgt): hgt |tstat| > 1, R2 and adj R2 increase, RMSE decreases 
(1) to (3) (add ankle): ankle |tstat| < 1, R2 increases, adj R2 decreases, and RMSE increases 
 
  

dofs 1 2 3 4 5 10 1 2 3 4 5 10 1 2 3 4 5 10 dofs
10 34% 40% 43% 45% 47% 19% 19% 18% 17% 16% 7% 5% 4% 3% 3% 10
20 33% 39% 41% 43% 44% 48% 17% 16% 15% 13% 12% 9% 6% 3% 2% 2% 1% 0% 20
50 32% 38% 40% 42% 43% 46% 16% 15% 13% 11% 9% 5% 5% 2% 1% 1% 0% 0% 50

100 32% 37% 40% 41% 42% 45% 16% 14% 12% 10% 9% 4% 5% 2% 1% 0% 0% 0% 100
250 32% 37% 39% 41% 42% 44% 16% 14% 11% 10% 8% 3% 5% 2% 1% 0% 0% 0% 250
500 32% 37% 39% 41% 42% 44% 16% 14% 11% 9% 8% 3% 5% 2% 1% 0% 0% 0% 500

q: #restrictions

prob (F(q, n-k-1) > 2)

q: #restrictions

prob (F(q, n-k-1) > 4)

q: #restrictions

prob (F(q, n-k-1) > 1)
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F stats and F tests:   
(4) to (1) (drop hgt and ankle): Since adj R2 increases,6 the F test associated with dropping hgt 
and ankle from (4) will have an Fstat<1 …  
 
Here are the F test results: 
 
. reg Brozek wgt abd hip thigh hgt ankle 
. test hgt ankle 
 
 ( 1)  hgt = 0 
 ( 2)  ankle = 0 
 
       F(  2,   245) =    0.66 
            Prob > F =    0.5180 

                                                 
6 In a previous version of this handout, the incorrectly said decreases. 


